데이터의 양이 적은 시계열 데이터의 모델링 과정을 찾다가 같은 고민으로 인해 해결방법을 찾고 실험적으로 시도해본 내용이 있어서 하나 하나 이해하는 관점으로 정리해보았습니다. (※ 유튜브 naver d2 포스팅을 참고하였습니다. URL : https://youtu.be/dB8cpsnZ5FA) 영상에서는 예시로 시계열 Feature 자체에 노이즈가 굉장히 심한 금융데이터를 사용하여 어떤 문제점이 있고 이를 어떤 식으로 해결했는지 설명하고 있습니다. 문제점 1. 시계열 Feature 자체의 노이즈 기본적으로 주가를 예측하는 모델링을 하는 경우 다음 주가는 현재주가를 기반으로 하며 딥러닝 모형이 찾아야 하는 정보와 노이즈를 함께 반영합니다. 상대적으로 정보보다 큰 노이즈 때문에 AR(1) 모형이랑 유사하다고 할..