PCA(Principal Component Aanalysis)를 공부하면서 machine learning 페이지를 참고하여 정리한 내용입니다. 주성분 분석(PCA)은 데이터의 여러 feature를 주성분(PC)이라고 하는 대표적인 feature로 차원을 축소하는 알고리즘입니다. 이 방법은 데이터의 많은 정보를 축약하여 효과적으로 높은 차원의 데이터값의 변화를 설명할 수 있습니다. 이 튜토리얼에서는 먼저 Scikit-learn을 사용하여 PCA를 구현한 다음 코드를 사용하여 단계별 구현과 PCA 알고리즘 이면의 완전한 개념을 이해하기 쉬운 방법으로 설명하고 있습니다. 1. scikit-learn을 사용하여 PCA 구축 scikit-learn 패키지의 decomposition 모듈은 데이터를 principa..